Paper 4 - Fundamentals of Business Mathematics and Statistics

	Paper-4: Fundamentals of Business Mathematics and Statistics							
Tin	ne Al	lowed: 3 Hours			Full Marks: 100			
		narks.						
	This question paper has two sections.							
		Both the sections ar	e to be answered subj	ect to instructions give	n against each.			
			Section	– A				
I.	(a) (Choose the correct a	inswer		(9 × 2 = 18)			
	(1)	The number to be a	dded to each term of	the ratio 3 : 7 to make	it 1: 2 is			
		(a) 2,	(b) 1,	(c) 3,	(d) none of these			
	(2)	A person deposits back after 3 years i		le interest for 3 years.	The amount he will get			
		(a) 2300	(b) 2400	(c) 2360	(d) 2350			
	(3)	If one roots of the e equal to	quation x² - 3x + m = 0	exceeds the other by	⁷ 5 then the value of M is			
		(a) -6	(b) -4	(c) 12	(d) 18			
	(4)	If ⁿ p ₃ = 120 then n =	=					
		(a) 8	(b) 4	(c) 6	(d) None of these			
	(5)	lf log <mark>2</mark> = 0.3010	log ₂ ¹⁰ =					
		(a) 0.3322	(b) 3.2320	(c) 3.3222	(d) 5			
	(6)	If $r_{12} = r_8$ find 2	22 _{cr}					
		(a) 213	(b) 321	(c) 231	(d) None of these			
	(7)	The number of way the letter O and end		e word Monday be a	rranged beginning with			
		(a) 120	(b) 24	(c) 96	(d) None of these			
	(8)	Some money is dist receives:	ributed between A an	d B in the ratio 2:3. If A	A receives Rs. 72, then B			
		(a) Rs. 90	(b) Rs. 144	(c) Rs. 108	(d) None of these			
	(9)		5 and first 10 terms of	a G. P. are respective	ly 16 and 3904. Find the			
		common ratio. (a) 2	(b) 3	(c) 4	(d) 5			

Ι.	(b)	State whether the following statements are true or false	(6 × 1 =	6)
		he average of 50 numbers is 38. If two numbers, namely 45 and 55 ar average of the remaining numbers is 30.	e discarded, t (the)
	(2) I	f the terms -1 + 2x, 5, 5+x are is an A.P. then x is 4	()
	(3) 1	he logarithm of one to any base is zero	()
	• •	f ⁿ C _n = 1 then 0! = 1	()
		he number of different number of 6 th digits (without repetition) can be ligits 3,1,7,0,9,5 is 120	formed form f	the)
	(6) T	he degree of the equation $3x^5 + xyz^2 + y^3$ is 3	()
An	swer:	Ι (α)		
	(1)	$\frac{3+x}{7+x} = \frac{1}{2} \Longrightarrow x = 1$	(Option b)	
	(2)	$\{2000 \times (6/100) \times 3 = 360 + 2000\}$	(Option c)	
	(3)	$\therefore x^2 - 3x + m = 0$		
		Let the roots be ∞ , ∞ + 5		
		$\therefore \ \infty + (\infty + 5) = 3$		
		$2 \propto = -2$		
		$\infty = -1$		
		\therefore the roots be -1, 4		
		\therefore Product of roots = M = -4	(Option b)	
	(4)	$\therefore {}^{n}P_{3} = 120 \text{ or } \frac{ n }{ n-3 } = 120$		
		$\Rightarrow n(n-1)(n-2) = 120 = 6 \times 5 \times 4$ $\therefore n = 4$	(Option c)	
	(5)	$\log_2 10 = \frac{1}{\log_{10} 2} \frac{1}{0.3010} = 3.3222$	(Option c)	
	(6)	$\because {}^{r}c_{12} = {}^{r}c_{8} \implies r = 12 + 8 = 20.$		
		$\therefore {}^{22}c_y = {}^{22}c_{20} = \frac{ \underline{22} }{ \underline{20} \underline{2} } = \frac{22 \times 21}{2} = 21 \times 11 = 231$	(Option c)	
	(7)	(Option b)		
	(8)	A : B = 2 : 3		
		$B = (72/2) \times 3 = 108$	(Option c)	
	(9)	(Option b)		

Academics Department, The Institute of Cost Accountants of India (Statutory Body under an Act of Parliament) Page 3

Answer: I (b)

	(1)	The average of 50 numbers is 38. If two numbers, namely 45 and 55 are dis average of the remaining numbers is 30.	scarded, the (F)
	(2) (3)	If the terms $-1 + 2x$, 5, 5+x are is an A.P. then x is 4 The logarithm of one to any base is zero	(F) (F) (T)
	(4)	If ${}^{n}C_{n} = 1$ then $0! = 1$	(T)
	(5)	The number of different number of 6 th digits (without repetition) can be for	rmed form
		the digits 3,1,7,0,9,5 is 120	(F)
	(6)	The degree of the equation $3x^5 + xyz^2 + y^3$ is 10	(F)
II.	Ansv	ver any four questions. Each question carries 4 marks	(4 × 4 = 16)

- (1) The ratio of present age of mother to her daughter is 5: 3. Ten years hence the ratio would be 3 : 2. Find their present ages.
- (2) What sum of money will yield ₹ 1,407 as interest in 1½ year at 14% p.a. simple interest?
- (3) Insert 4 arithmetic means between 4 and 324.

(4) If
$$\frac{\log x}{y^2 + z^2 + yz} = \frac{\log y}{z^2 + x^2 + zx} = \frac{\log z}{x^2 + y^2 + xy}$$

Show that $x^{y-z} y^{z-x} z^{x-y} = 1$

- (5) From a company of 15 men, how many selections of 9 men can be made so as to exclude 3 particular men?
- (6) If a, 4, b are in AP and a, 2, b are in G.P., then prove that 1/a + 1/b = 2.

Answer: II

(1) Let present age of mother be 5x and that of her daughter be 3x years. 10 years hence age of mother will be (5x + 10) years and that of daughter be (3x + 10) years.

By question $\frac{5x+10}{3x+10} = \frac{3}{2}$ or , 2(5x + 10) = 3(3x + 10) or, 10x + 20 = 9x + 30 or, x = 10

:. Reqd. ages are $5 \times 10 = 50$ years and $3 \times 10 = 30$ years.

(2) What sum of money will yield ₹ 1,407 as interest in 1 year at 14% p.a. simple interest. Here S.I = 1407, n = 1.5, I = 0.14, P = ? S.I = P. i.n or, 1407 = p x 0.14 x1.5 Or, p = $\frac{1407}{2} = \frac{1407}{2} = 6700$

$$0.14 \times 1.5 = 0.21 = 0.00$$

Required amount = ₹ 6,700%

(3) Let a = 4, b = 324 $d = \left(\frac{b}{a}\right)^{\frac{1}{x+1}} = \left(\frac{239}{4}\right)^{\frac{1}{5}} = (81)^{\frac{1}{3}}$ $\therefore \text{ tn } = b$ $\Rightarrow a + (n+1) d = b$ $d = \frac{b-a}{n+1} = \frac{324 - 4}{5} = \frac{320}{5} \quad 64$ $t_1 = 68, t_2 = 132, t_3 = 196, t_4 = 260$

(4)
$$\frac{\log x}{y^2 + z^2 + yz} = \frac{\log y}{z^2 + x^2 + zx} = \frac{\log z}{x^2 + y^2 + xy} = k \text{ (say)}$$

Or
$$\log x = k (y^2 + z^2 + yz)$$
, $\log y = k (z^2 + x^2 + zx)$, $\log z = k (x^2 + y^2 + xy)$ (i)

To show $x^{y-z} y^{z-x} z^{x-y} = 1$, taking logarithm both sides

Log $(x^{y-z} . y^{z-x} . z^{x-y}) = \log 1 = 0$ i. e. to show

 $(y - z) \log x + (z - x) \log y + (x - y) \log z = 0$

L. H. S. =
$$(y - z)$$
. k. $(y^2 + z^2 + yz) + (z - x)$. k. $(z^2 + x^2 + zx) + (x - y)$. k. $(x^2 + y^2 + xy)$

$$= k (y^3 - z^3 - x^3 + x^3 - y^3) = k. 0 = 0$$
, hence proved.

(5) Excluding 3 particular men in each case, we are to select 9 men out of (15-3) men.
 Hence the number of selection is equal to the number of combination of 12 men taken
 9 at a time which is equal to

$${}^{12}C_9 = \frac{12!}{9!3!} = 220$$

(6) If a,4 b are in A.P. and a, 2, b are in G.P., then Prove that $\frac{1}{a} + \frac{1}{b} = 2$ \therefore a, 4, b are in A.P., then 4-a = b-4 Or, a+b = 8(1) Again a, 2, b are in G.P., then $\frac{2}{a} = \frac{b}{2}$ Or, ab = 4(2) Dividing (1) by (2), we get, $\frac{a}{ab} + \frac{b}{ab} = \frac{8}{4}$ Or, $\frac{1}{b} + \frac{1}{a} = 2$ Or, $\frac{1}{a} + \frac{1}{b} = 2$

Academics Department, The Institute of Cost Accountants of India (Statutory Body under an Act of Parliament) Page 5

				Se	ection – B		
III.	(a)	Choos	se the correct o	answer			(12 × 2 = 24)
	(1)	For the (a) 10	e observations) (b) 9	8 range is (c) 8	(d) None	à	
	(2)	Given	$\sum_{i=1}^{n} (x_i - 4) = 7$	2 and $\sum_{i=1}^{n} (x_i - 7)$	= 3. Then arithmetic 1	mean of x is	
		(a)	68.8	(b) 6.88	(c) 0.688	(d) none	of these
	(3)	(a) Av	verage Growth	sed for calculating Rate of variables Increase in net wo	-	(b) Average spe (d) All the abov	
	(4)	$x = \frac{31}{6}$	$\frac{1}{6}$ - $\frac{y}{6}$ is the reg	pression equation	of		
		(b)	y on x	(b) x on y	(c) both	(d) none	9
	(5)	The m (a)	ean of first 10 e 5.5	even number is (b) 55	(c) 11	(d) none	of these
	(6)	(AM) (o positive obse (HM) = (GM)² 6M) (HM) = (AM			llowing is true? M) (GM) = (HM) ² one of above	
	(7)	-			ent of correlation bet ording as b > 0 or b <		e of these
	(8)		tandard devia	uartiles are used t ion	o define (b) Quartile Deviatior	n (c) Both	
	(9)	lf an u is	unbiased coin i	is tossed twice, th	e probability of obta	ily of obtaining a	t least one tail
		(a)	0.25	(b) 0.50	(c) 0.75	(d) 1.00	
	(10) Differ (a) W		the maximum & (b) Size	minimum value of a (c) Range	given data is call (d) Class	
	(11	-	dice are throw n is 2' is	wn together. The	probability that 'the	e event the diffe	rence of nos.
		(a)	2/9	(b) 5/9	(c) 4/9	(d) 7/9	
	(12	?) If an (a)	unbiased coin 0.25	is tossed twice, th (b) 0.50	ne probability of obto (c) 0.75	iining at least one (d) 1.00	tail is
III.	(b)	State v	whether the fol	lowing statement	s are true or false		(12 × 1 = 12)
	(1)	There	is no difference	e between co-eff	icient of variation and	d variance	()
	(2)	Sum o	of probability of	an event A and i	ts complements is 1		()

Academics Department, The Institute of Cost Accountants of India (Statutory Body under an Act of Parliament) Page 6

(3) The slope of the regression line of y on x is b_{yx}	()
(4) If events are mutually exclusive then their probabilities are less than one	()
(5) In a moderately asymmetrical distribution A.M. < G.M. < H.M.	()
(6) Median can never be equal to mean in a skewed distribution	()
(7) The sum of individual observations from mean is one	()
(8) If x and y satisfy the relationship $y = -5 + 7x$, the value of r is zero	()
(9) In a normal distribution SD < MD < QD	()
(10) Mode is the value that has maximum frequency	()
(11) In the line y = 19 - $\frac{5x}{2}$, byx is equal to -5/2	()
(12) Sum of all probabilities is equal to one	()

Answer: III (a)

- (1) (b)
- (2) (a)
- (3) (b)
- (4) (b)
- (5) (c)
- (6) (a)
- (7) (c)
- (8) (b)
- (9) (c)
- (10) (c)
- (11) (a)
- (12) (c)

Answer: III (b)

- (1) (F)
- (2) (T)
- (3) (T)
- (4) (F)
- (5) (T)

- (6) (T)
- (7) (F)
- (8) (F)
- (9) (F)
- (10) (T)
- (11) (T)
- (12) (T)

IV. Answer any four questions. Each question carries 6 marks $(4 \times 6 = 24)$

(1) Draw the histogram of the following data and comment on the shape of the distribution:

Wages (in ₹)	:	50-59	60-69	70- 79	80-89	90-99
No. of employees	:	8	10	16	12	7

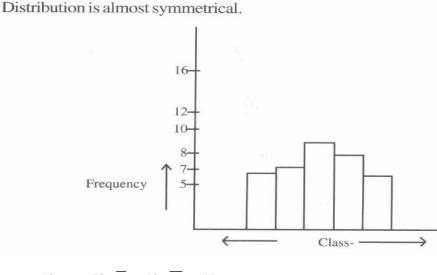
(2) The mean and standard deviation of the marks obtained by the groups of the students consisting of 50 each are given below:

Group	Mean	\$.D.
Α	60	8
В	55	7

Calculate the mean and standard deviation of the marks obtained by all 100 students.

- (3) The marks obtained by 6 students were 24, 12, 16, 11, 40, 42. Find the Range. If the highest mark is omitted, find the percentage change in the range.
- (4) Compute rank correlation from the following table

Х	415	434	420	430	424	428
Y	330	332	328	331	327	325


- (5) The means of samples of sizes 50 and 75 are 60 and x respectively. If the mean of the combined group is 54, find x.
- (6) A bag contains 7 red balls and 5 white balls. 4 balls are drawn at random. What is the probability that (i) all of them are red; (ii) two of them are red and two white?

Answer: IV

(1)

'	Class- boundaries	:	49.5- 59.5	59.5 – 69.5	69.5 – 79.5	79.5 – 89.5	89.5-99.5
	Frequency	:	8	10	16	12	7

HISTOGARM:

(2) Here $n_1 = 50$, $n_2 = 50$, $\overline{X_1} = 60$, $\overline{X_2} = 55$

So, $\overline{x} = = \frac{n_1 \overline{x_1} + n_2 \overline{x_2}}{n_1 + n_2} = \frac{50 \times 60 + 50 \times 55}{100} = \frac{300 + 2750}{100} = \frac{5750}{100} = 57.50$

Now
$$d_1 = \overline{x_1} - \overline{x} = 60 - 57.5 = 2.5$$
, $d_2 = \overline{x_2} - \overline{x} = 55 - 57.5 = -2.5$
 $S_1^2 = 64$, $S_2^2 = 49$
Hence, $S^2 = \frac{n_1(S_1^2 + d_1^2) + n_2(S_2^2 + d_2^2)}{n_1 + n_2}$
 $= \frac{50[64 + 6.25 + 49 + 6.25]}{100} = \frac{50 \times 125.50}{100} = 62.75$
 $S = \sqrt{62.75} = 7.92$

Hence, Mean \overline{X} = 57.5 and std deviation (s) = 7.92.

(3) The marks obtained by 6 students were 24, 12, 16, 11, 40, 42. Find the Range. If the highest mark is omitted, find the percentage change in the range. Here maximum mark = 42, minimum mark = 11.

:. Range = 42 - 11 = 31 marks

If again the highest mark 42 is omitted, then amongst the remaining. Maximum mark is 40. So, i (revised) = 40 - 11 = 29 marks.

Change in range = 31 - 29 = 2 marks.

 \therefore Reqd. percentage change = 2 ÷ 31 × 100 = 6.45%

Note: Range and other obsolute measures of dispersion are to be expressed in the same unit in which observations are expressed.

For grouped frequency distribution:

In this case range is calculated by subtracting the lower limit of the lowest class interval from the upper limit of the highest.

(4)

Х	R ₁	Y	R_2	$(R_1 - R_2) = D$	D ²
415	6	330	3	3	9
434	1	332	1	0	0
420	5	328	4	1	1
430	2	331	2	0	0
424	4	327	5	-1	1
428	3	325	6	-3	9

$$r_{k} = \frac{1}{N(N^{2} - 1)}$$
$$= 1 - \frac{1(20)}{6(6^{2} - 1)} = 1 - \frac{120}{210} = \frac{210 - 120}{210} = \frac{90}{210} = \frac{3}{7} = 0.429$$

- (5) We have $\overline{x_{12}} = \frac{n_1 \overline{x_1} + n_1 \overline{x_1}}{n_1 + n_2}$ or, $54 = \frac{50 \times 60 \times 75x}{50 + 75}$ or, $54 = \frac{3000 \times 75x}{125}$ or, 3000 + 75x = 6750 or, 75x = 3750 or, x = 50.
- (6) (i) Favourable cases 7C_4 , Exhaustive cases ${}^{12}C_4$.

Probability =
$$\frac{{}^{7}C_{4}}{{}^{12}C_{4}} = \frac{105}{495} = \frac{7}{33}$$

(ii) Favourable cases =
$${}^7C_2 \times {}^5C_2$$

Exhaustive cases = ${}^{12}C_4$
Probability = $\frac{{}^7C_2 \times {}^5C_2}{{}^{12}C_4} = \frac{12 \times 10}{495} = \frac{14}{33}$