Paper 4 - Fundamentals of Business Mathematics and Statistics

		Paper-4: F	undame	ntals of	Business M	athematics and S	Statistics	
Tir	ne A	llowed: 3 Hou	vrs				Full Marks: 100)
		The Both the sec	e figures in t This o tions are to	he margin question po be answei	on the right sig aper has two s red subject to	de indicate full marks ections. instructions given ago	ainst each.	
				9	Section – A			
I.	(a)	Choose the c	orrect answ	ver			(9 × 2 =	18)
	(1)	lf 3, x, 27 are i (a) ±6	in continue (b) ±9	d proportio (c) ±7	n then x =	(d) None of these		
	(2)	At what rate p (a) 4%	o.a. S.I. will ((b) 3%	a sum of m (c) 5%	oney double i %	itself in 25 years? (d) 6%		
	(3)	lf A : B = 3 : 4 (a) 3 : 4 : 5	& B : C = 2 : (b) 3 : 4 : 1	5, then A : 10 (c) 4 :	B : C : 3 : 10	(d) 3 : 4 : 8		
	(4)	lf ⁿ p ₃ = 120 th (a) 8	nen n = (b) 4	(c) 6		(d) None of these		
	(5)	lf ^r c ₁₂ = ^r c ₈ (a) 213	find ²² c _r (b) 321	(c) 23	;1	(d) None of these		
	(6)	The value of I	$og_{\sqrt{2}}^{32}$ is					
		(a) 5/2	(b) 5	(c) 10)	(d) 1/10		
	(7)	A.M. of two in Find the numb (a) 5, 20	tegral numl pers. (b)	bers excee) 1, 4	eds their G.M. (c) 2, 8	by 2 and the ratio of t (d) 4, 16	he numbers is 1	: 4.
	(8)	Set of even po (a) {x/x<6}	ositive integ (b)	jers less tho) {x/x=6}	an equal to 6 k (c) {x/x≤6}	by selector method. (d) None		
	(9)	If one roots of equal to (a) -6	f the equati (b)	on x ² - 3x ·	+ m = 0 excee (c) 12	eds the other by 5 the (d) 18	n the value of <i>I</i>	N is
I.	(b)	State whether	the followi	ng stateme	ents are true oi	false	(6 × 1 =	= 6)
	(1)	If 30% of x = 4	0% of y the	n x : y = 4 :	3		()
	(2)	If the terms -1	+ 2x, 5, 5+>	c are is an <i>i</i>	A.P. then x is 4	l	()
	(3)	The statemen	t "Equivaler	nt sets are o	always equal"	is true or false	()
	(4)	The logarithm	()				
	(5)	ⁿ c _o = n is true	e of false				()
	(6)	The degree of	f the equati	on 3x⁵ + xy	^y z ² + y ³ is 3		()

Answer: I (a) \therefore 3, x, 27 are in continued proortion. (1) $\cdot b^2 = ac$ $\Rightarrow x^2 = 3(27) = 81$ $x = \sqrt{81}$ = ±9 (option b) (2) Let the sum be ₹ P t = 25 yrs. ∴ A = ₹2P, $\therefore A = P\left(\frac{1+rt}{100}\right)$ $\Rightarrow 2 \not \sim = \not \sim \left(\frac{1+25}{100}r\right)$ $\Rightarrow 1 = \frac{r}{4} = \Rightarrow r = 4\%$ (Option a) (3) (Option b) (4) $\therefore {}^{n}P_{3} = 120 \quad P = \frac{|n|}{|n-3|} = 120$ \Rightarrow n (n - 1) (n - 2) = 120 = 6×5×4 (Option c) ∴n=4 $:: {}^{r}c_{12} = {}^{r}c_{8} \implies r = 12 + 8 = 20.$ (5) $\therefore {}^{22}c_y = {}^{22}c_{20} = \frac{|\underline{22}|}{|\underline{20}|\underline{2}|} = \frac{22 \times 21}{2} = 21 \times 11 = 231$ (Option c) (6) 10 $\log \sqrt{\frac{2}{2}} = 10$ (Option c) (7) Let the numbers be x, 4x $\therefore \frac{x+4x}{2} = \sqrt{x(4x)} + 2$ $\Rightarrow \frac{5x}{2} = 2x + 2$ $\Rightarrow x = 4$.: The numbers are 4, 16 (Option d) (8) { $x/x \le 6$ } (Option c) (9) $\therefore x^2 - 3x + m = 0$ Let the roots be ∞ , $\infty + 5$ $\therefore \infty + (\infty + 5) = 3$ $2 \propto = -2$ $\infty = -1$ \therefore The roots be -1, 4 \therefore Product of roots = M = -4 (Option b)

Academics Department, The Institute of Cost Accountants of India (Statutory Body under an Act of Parliament) Page 3

Answer: I (b)

(1)
$$\therefore \frac{30}{100} (x) = \frac{40}{100} (y)$$

 $\Rightarrow 3x = 4y \Rightarrow \frac{x}{y} = \frac{4}{3} \Rightarrow x : y = 4 : 3$
(T)

(2) :: -1 + 2x, 5, 5 + x are in an A. P

$$\Rightarrow 10 = -1 + 2x + 5 + x$$

$$10 = 3x + 4$$

$$3x = 6 \Rightarrow x = 2$$

- (3) The Statement "Equivalent sets are always equal
- (4) The logarithm of one to any base is zero

(5)
$${}^{n}C_{0} = n$$
 (F)

- (6) The degree of the equation $3x^5 + xyz^2 + y^3$ in 3
- II. Answer any four questions. Each question carries 4 marks

$$(4 \times 4 = 16)$$

- (1) If $\frac{x}{b+c} = \frac{y}{c+a} + \frac{z}{a+b}$ then show that (b-c)(x-a) = (c-a)(y-b) = (a-b)(z-c) = 0.
- (2) Which is better investment 3% per year compounded monthly (or) 3.2% per simple interest (given that (1.0025)¹² = 1.0304)

(F)

(F)

(T)

(F)

- (3) Insert 4 arithmetic means between 4 and 324.
- (4) Prove that $\frac{\log\sqrt{27} + \log 8 + \log\sqrt{100}}{\log 14400} = \frac{3}{4}$
- (5) A question paper is divided into three groups A, B, C which contains 4, 5 and 3 questions respectively. An examine is required to answer 6 questions taking atleast 2 from A, 2 From B, 1 From C. in how many ways he can answer.
- (6) If the roots of the equation $ax^2 + bx + c = 0$ in the ratio 2 : 3, then show that $6b^2 = 25ca$.

Answer: II

(1) Let $\frac{\mathbf{x}}{\mathbf{b}+\mathbf{c}} = \frac{\mathbf{y}}{\mathbf{c}+\mathbf{a}} + \frac{\mathbf{z}}{\mathbf{a}+\mathbf{b}} = \mathbf{k}$ (constant). Say

Then x = K(b+c), y = k(c+a), z = a(a+b)

So, (b-c)(x-a)+(c-a)(y-b)+(a-b)(z-c)

- = [x(b-c)+y(c-a)+z(a-b)]-[a(b-c)+b(c-a)+c(a-b)]
- = [k(b+c)(b-c)+k(c+a)(c-a)(c-a)+k(a+b)(a-b)]-[ab+ac+bc-ab+ac-bc]
- $= [k(b^2-c^2)+k(c^2-a^2)+k(a^2-b^2)]-0$
- $= [k(b^2-c^2+c^2-a^2+a^2-b^2)]-0$
- = k×0-0=0-0=0 Proved

(2)	∴ ₹200, ₹280	
	$r_e = 100 \left\{ \left(\frac{1+i}{m}\right)^m - 1 \right\}$	
	$= 100 \left[\left(\frac{1+3}{1200} \right)^{12} - 1 \right]$	
	$= 100 \left[\left(\frac{1203}{1200} \right)^{12} - 1 \right]$	
	= 100 (0.304)	
	= 3.04%	
	∴ 3.2% S. I in better investme	ent.
(3)	Let $\alpha = 4$,	b = 324
	$d = \left(\frac{b}{a}\right)^{\frac{1}{x+1}} = \left(\frac{239}{4}\right)^{\frac{1}{5}} = (81)^{\frac{1}{3}}$	
	∵tn =b	
	\Rightarrow a + (n+1) d =b	
	$d = \frac{b - a}{n + 1} = \frac{324 - 4}{5} = \frac{320}{5}$	64
	t ₁ , = 68, t ₂ = 132, t ₃ = 196, t ₄ =	260
(4)	$\frac{\log\sqrt{27} + \log8 + \log\sqrt{100}}{\log 14400}$	
	$\log^{3/2} + \log^{3} + \log^{10}^{3/2}$	
	log(120) ²	
	$=\frac{\frac{3}{2}\log 3 + 3\log 2 + \frac{3}{2}\log 10}{2}$	
	2log120	
	$= \frac{\frac{3}{2}(\log 3 + 2\log 2 + \log 10)}{2}$	
	2log(3×4×10)	
	$= \frac{3(\log 3 + \log 4 + \log 10)}{4(\log 3 + \log 4 + \log 10)}$	
	$=\frac{3}{4}$ = R.H.S.	

(5)

Group A (4)	Group B (5)	Group C (3)	Total
4 C ₂	5C3	3C1	$4c_2 \times 5c_3 \times 3c_1 = 180$
4C3	5C2	3C1	$4c_3 \times 5c_2 \times 3c_1 = 120$
4C2	5C2	3c ₂	$4c_2 \times 5c_2 \times 3c_2 = 180$

Required no. of ways = 180 + 120 + 180 = 480

MTP_Foundation_Syllabus2016_Dec2018_Set 1

(6) Let a, β be the roots of the equation $ax^2 + bx + c = 0$ so that

 $a + \beta = \frac{-b}{a}$ (i); $\alpha\beta = \frac{c}{\alpha}$ (ii) Again, $\frac{a}{\beta} = \frac{2}{3}$; or $\alpha = \frac{2}{3}\beta$ (iii) From (i), $\frac{2}{3}\beta + \beta = \frac{-b}{\alpha}$; or $\frac{5\beta}{3} = \frac{-b}{\alpha}$ or, $\beta = \frac{3}{5} \times \frac{-b}{\alpha} = \frac{-3b}{5\alpha}$ From (iii), $a = \frac{2}{3} \times \frac{-3b}{5a} = \frac{-2b}{5a}$ From (ii), $\frac{-2b}{5a} \times \frac{-3b}{5a} = \frac{c}{a}$; or, $\frac{6b^2}{25a^2} = \frac{c}{a}$; or, $6b^2 = 25ac$ [as, $a \neq 0$]. Section - B III. (a) Choose the correct answer $(12 \times 2 = 24)$ (1) The mode for the series 3, 5, 6, 2, 6, 2, 9, 5, 8, 6 is (d) 8 (a) 5.1 (b) 5 (c) 6 (2) Which of the following measures of averages divide the observation into two parts (b) Median (c) Mode (a) Mean (d) Range (3) If the co-efficient of correlation between x and y is 2/3 and the standard deviation of x is 3 and standard deviation of y is 4, the covariance between x and y will be (a) 3 (b) 6 (c)7 (d) 8 (4) If Median = 12, Q1 = 6, Q3 = 22 then the co-efficient of Quartile Deviation is 33.33 (b) 60 (c) 66.67 (a) (d) 70 (5) Class mark is (a) A midpoint of class interval (b) Upper point of class interval (c) Average rate of increase in net worth of a company (d) All the above 1 & 3 (6) Harmonic mean is used for calculating (a) Average Growth Rate of variables (b) Average speed of journey (c) Average rate of increase in net worth of a company (d) All the above 1 to 3 (7) Two regression lines coincide when (c) r = +1 or -1 (a) r = 0 (b) r = 2 (d) None (8) For the regression equation of Y on X, 2x + 3y + 50 = 0. The value of b_{xy} is (a) 2/3 (b) -2/3 (c) - 3/2(d) None (9) If y = a + bx, then what is the co-efficient of correlation between x and y? (a) 1 (b) -1 (c) 1 or -1 according as b > 0 or b < 0(d) None of these

(10) If an unbiased coin is tossed twice, the probability of obtaining at least one tail is

		MTP	_Found	ation_Syllabu	s2016_Dec20	18_Set 1	
		(a)	0.25	(b) 0.50	(c) 0.75	(d) 1.00	
	(11)	ne difference of n	ifference of nos.				
		(a)	2/9	(b) 5/9	(c) 4/9	(d) 7/9	
	(12)	$x = \frac{3}{6}$	$\frac{1}{6}$ - $\frac{y}{6}$ is the reg	pression equation of			
		(a)	y on x	(b) x on y	(c) both	(d) none	
III.	(b) :	State v	whether the follo	owing statements are t	rue or false	(12 × 1 = 12))
	(1)	Harm	onic mean is b	ased on few items in a	series	()
	(2)	Mode	is a mathema	lical average		()
	(3)	Co-ef	ficient of varial	ion = Co-efficient of Mean	variation × 100	()
	(4)	Range	e is the value o	f difference between r	node and median	()
	(5) If a coin is tossed, then probability of getting two heads is zero)
	(6)	lf an u mutu	unbiased coin i ally exclusive	s tossed once, then the	e two events head and to	ail are ())
	(7)	10 th Pe	ercentile is equ	al to 9 th Decile.		()
	(8)	Mean	deviation can	never be negative		()
	(9)	The vo	alue of correlat	ion co-efficient lies be	tween -1 & +1	()
	(10)	Bivari	ate data are th	e data collected for n	variables	()
	(11)	When	all values are	equal, then standard o	leviation would be zero	()
	(12)	As the	e sample size ir	crease, range tends t	o increase	()

Answer: III (a)

- (1) (C)
- (2) (b)
- (3) (d)
- (4) (C)
- (5) (a)
- (6) (b)
- (7) (c)
- (8) (c)
- (9) (c)
- (10) (c)
- (11) (a)
- (12) (b)

MTP_Foundation_Syllabus2016_Dec2018_Set 1

Answer: III (b)

- (1) (F)
- (2) (F)
- (3) (F)
- (4) (F)
- (5) (T)
- (6) (T)
- (7) (F)
- (8) (T)
- (9) (T)
- (10) (F)
- (11) (T)
- (12) (F)

IV. Answer any four questions. Each question carries 6 marks

 $(4 \times 6 = 24)$

- (1) Prove that for any two positive real quantities $AM \ge GM \ge HM$.
- (2) Find the median and median-class of the data given below:

Class-boundaries	Frequency		
15-25	4		
25-35	11		
35-45	19		
45-55	14		
55-65	0		
65-75	2		

- (3) The marks obtained by 6 students were 24, 12, 16, 11, 40, 42. Find the Range. If the highest mark is omitted, find the percentage change in the range.
- (4) Calculate Karl Pearson's coefficient of correlation between variables X and Y using the following data:

Х	25	40	30	25	10	5	10	15	30	20
Y	10	25	40	15	20	40	28	22	15	5

(5) Given:

Covariance between X and Y = 16

Variance of X = 25

Variance of Y = 16

- (i) Calculate co-efficient of correlation between X and Y,
- (ii) If arithmetic means of X and Y are 20 and 30 respectively, find regression equation of Y on X.
- (iii) Estimate Y when X = 30.
- (6) What is the chance that a leap year, selected at random will contain 53 Sundays?

Answer: IV

(1) Let x_1 and x_2 be any two positive real quantities. Now $(x_1 - x_2)^2 = (x_1 + x_2)^2 - 4x_1x_2$ => $(x_1 - x_2)^2 - 4x_1x_2 \ge 0$

$$=> \left(\frac{X_1 + X_2}{2}\right)^2 \ge x_1 x_2$$
$$=> \frac{X_1 + X_2}{2} \ge \sqrt{x_1 x_2}$$

=> AM ≥ GM(I)

Next
$$\frac{X_1 + X_2}{\frac{X_1 X_2}{2}} \ge \frac{\sqrt{x_1 x_2}}{x_1 x_2} \Longrightarrow \frac{\frac{1}{X_1} + \frac{1}{X_2}}{2} \ge \frac{1}{\sqrt{x_1 x_2}}$$

$$\Longrightarrow \frac{2}{\frac{1}{X_1} + \frac{1}{X_2}} \ge \sqrt{x_1 x_2}$$

=> HM \leq GM (II) Combining (I) & (II) AM \geq GM \geq HM.

(2) Table: Calculation of Median

Class-boundaries	Frequency	Cumulative frequency		
15-25	4	4		
25-35	11	15		
35-45	19	34		
45-55	14	48		
55-65	0	48		
65-75	2	50 (= N)		

Median = Value of $\frac{N^{\text{th}}}{2}$ item = value of $\frac{50^{\text{th}}}{2}$ item = value of 25th item, which is greater than cum. Freq. 15. So median lies in the class 35-45. Now, Median = $l_1 + \frac{l_2 - l_1}{f}$ (m-c), where $l_1 = 35$, $l_2 = 45$, f = 19, m = 25, c = 15= $35 + \frac{45 - 35}{19}(25 - 15) = 35 + \frac{10}{19} \times 10 = 35 + 5.26 = 40.26$ Required median is 40.26 and median-class is (35 - 45).

(3) The marks obtained by 6 students were 24, 12, 16, 11, 40, 42. Find the Range. If the highest mark is omitted, find the percentage change in the range.

Here maximum mark = 42, minimum mark = 11.

MTP_Foundation_Syllabus2016_Dec2018_Set 1

If again the highest mark 42 is omitted, then amongst the remaining. Maximum mark is 40. So, i (revised) = 40 - 11 = 29 marks.

Change in range = 31 - 29 = 2 marks.

 \therefore Reqd. percentage change = 2 ÷ 31 × 100 = 6.45%

Note: Range and other obsolute measures of dispersion are to be expressed in the same unit in which observations are expressed.

For grouped frequency distribution:

In this case range is calculated by subtracting the lower limit of the lowest class interval from the upper limit of the highest.

- Х Y X=X-21 Y=Y-22 χ2 Y2 XY 25 10 -12 16 144 -48 4 40 25 19 3 361 9 57 30 40 9 18 81 324 162 4 -28 25 15 -7 16 49 20 -11 -2 121 22 10 4 18 324 5 40 -16 256 -288 10 28 -11 6 121 36 -66 15 22 0 36 0 0 -6 30 9 -7 81 49 -63 15 20 -1 -17 289 17 5 1 **Σ**X=0 **Σ**Y=0 **Σ**X²=1090 **Σ**Y²=1228 **Σ**XY=-235 **Σ**X=210 **Σ**Y=220
- (4) Table: Calculation of Coefficient of correlation

$$\bar{X} = \frac{\sum X}{N} = \frac{210}{10} = 21$$
$$\bar{Y} = \frac{Y}{N} = \frac{220}{10} = 22$$
$$r = \frac{-235}{\sqrt{1090 \times 1228}} = \frac{-235}{1156.94} = -0.203$$

~ • •

(5) (i) Given covariance between X and Y = $\frac{\sum XY}{N}$ = 16

Variance of X = $\sigma_x^2 = 25$ $\sigma_x = \sqrt{25} = 5$ Variance of Y = $\sigma_{Y^2} = 16$ $\sigma_Y = \sqrt{16} + = 4$ Applying formula $r = \frac{\sum XY}{N\sigma_X\sigma_Y} = 16$ $= \frac{16}{5 \times 4} = 0.8$ (ii) Given $\overline{X} = 20$ $\overline{Y} = 30$ $Y - \overline{Y} = r\frac{6\gamma}{6\chi}(X - \overline{X})$ $Y - 6 = 0.9 \frac{1.5}{10}(X - 40)$ Y - 6 = 0.135(X - 40) Y - 6 = 0.135(X - 40) Y - 6 = 0.135X - 5.4 Y = 6 + 0.135X - 5.4 Y = 0.6 + 0.135X(iii) Put X = 30 in regression

(iii) Put X = 30 in regression equation of Y on X.

- Y = 4.65
- (6) As a leap year consist of 366 days it contains 52 complete weeks and two more days. The two consecutive days make the following combinations:
 - (a) Monday and Tuesday
 - (b) Tuesday and Wednesday
 - (c) Wednesday and Thursday
 - (d) Thursday and Friday
 - (e) Friday and Saturday
 - (f) Saturday and Sunday, and
 - (g) Sunday and Monday

If (f) or (g) occur, then the year consists of 53 Sundays.

Therefore the number of favourable cases = 2

Total number of cases = 7

The probability = $\frac{2}{7}$