Paper- 4: FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Paper- 4: FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Full Marks: 100

Time Allowed: 3 Hours

 $[2 \times 3 = 6]$

Section – A Answer any TWO questions. Each question carries 5 marks I. $[2 \times 5 = 10]$ 1 Let 'x' be the original no. of labourers in a factory and \mathfrak{F} 'y' be the original average wages of labourers. ∴ Original amount of wages = ₹ xy After reduction, No. of Labourers = $\frac{11}{15}x$ Amount of wages after reduction in the no. of labourers and increment in their wages = $\frac{11}{15}$ x × $\frac{25}{22}$ y = ₹ $\frac{5}{6}$ xy. :. Required Ratio = $\frac{\text{Original wages}}{\text{Changed wages}} = \frac{\cancel{5}}{\frac{5}{\cancel{5}}} = -6:5 \text{ (decreased)}$ Given $\log_{a} bc = x$, $\log_{b} ca = y$ and $\log_{c} (ab) = z$ 2. Now $x+1 = \log_{a}(bc) + \log_{a}a = \log_{a}abc$ Similarly $y+1 = \log_{b} abc$, $z+1 = \log_{c} (abc)$ Now, L.H.S. = $\frac{1}{x+1} + \frac{1}{y+1} + \frac{1}{z+1}$ $= \frac{1}{\log_a abc} + \frac{1}{\log_b (abc)} + \frac{1}{\log_b (abc)}$ $= \log_{abc} a + \log_{abc} b + \log_{abc} c$ = log_{abc} (abc) = 1 = R.H.S.Given total cost of steel plant is $c(x) = \frac{1}{3}x^3 - 7x^2 + 11x + 50$ 3. Marginal cost (MC) = $\frac{dc}{dx}$ $=\frac{1}{3}(3x^2)-7(2x)+11$ $= x^2 - 14x + 11$ (say y) In order to that the marginal cost is to be Minimum its derivative is zero and 2nd derivative must be positive.

 $\therefore \frac{dy}{dx} = 0$ $\Rightarrow 2x - 14 = 0$ $\Rightarrow X = 7 \text{ tons / week}$ Again $\frac{d^2y}{dx^2} = 2 > 0$ (which is +ve) $\therefore \text{ Marginal cost is Minimum at } x = 7 \text{ tons/week}$

II. Answer any TWO questions. Each question carries 3marks

4. Let the sum be ₹ 'p'
∴ i = 5% = 0.05, n = 2yrs.
c.i. = p{(1+i)ⁿ-1} = p{(1.05)²-1}

$$= p\{1.1025 - 1\} \\= p\{0.1025\}$$

S.I. = $\frac{prt}{100} = P(0.05)(2) \\= P(0.10)$
 \therefore C.I. - S.I. = 6.90
=> P(0.1025) - P(0.10) = 6.90
=> P(0.0025) = 6.90
 \therefore P = $\frac{6.90}{0.0025} = ₹ 2760$
 \therefore Required sum = ₹ 2760.

5. Let $(1.234)^{\circ} = (0.1234)^{\circ} = 10^{\circ} = k$ (say)

$$\begin{array}{c|c} \therefore (1.234)^{\alpha} = k & \therefore (1.234)^{b} = k & \therefore 10^{c} = k \\ \alpha = \log_{1.234} k & => b = \log_{0.1234} k & c = \log_{10} k \\ \therefore \frac{1}{\alpha} = \log_{k} (1.234) & => \frac{1}{b} = \log_{k} (0.1234) & \frac{1}{c} = \log_{k} 10 \end{array}$$

Now L.H.S. =
$$\frac{1}{a} - \frac{1}{c}$$

= $\log_{k}(1.234) - \log_{k}10$
= $\log_{k}(\frac{1.234}{10})$
= $\log_{k}(0.1234)$
= $\frac{1}{b}$
= R.H.S.

6. Given a function f(x) is defined as follows f(x) = 2x - 1 x < 3

$$= k$$
 $x = 3$
 $= 8 - x$ $x > 3$

∴ f(x) is continuous at x = 3
i.e.,
$$x \rightarrow \overline{3} f(x) = x \rightarrow \overset{Lt}{3} f(x) = f(3)$$

=> $x \rightarrow \overline{3} (2x - 1) = x \rightarrow \overset{Lt}{3} (8 - x) = k$
=> $n \xrightarrow{Lt} 0 \{2(3 - h) - 1\} = n \xrightarrow{Lt} 0 8 - (3 + n) = k$
=> $5 = 5 = k$.

III. Choose the correct answer

7. Answer: (a) Let the fraction be x $\therefore x: \frac{1}{27} = \frac{3}{11}: \frac{5}{9}$ $\Rightarrow \frac{x}{\frac{1}{27}} = \frac{\frac{3}{11}}{\frac{5}{9}}$ [5 × 1 = 5]

- $\Rightarrow \qquad 27x = \frac{3}{11} \times \frac{9}{5} = \frac{27}{55}$ $x = \frac{1}{55}$
- 8. Answer: (a)

Given
$$A \propto B^2$$

 $\Rightarrow A = KB^2$
 \therefore When $A = 4$ then $B = 4$
 $\therefore 4 = k(4)^2$
 $K = \frac{4}{16} = \frac{1}{4}$
 $\therefore A = 3$
 $3 = \frac{1}{4}B^2$
 $B^2 = 12$

9. Answer: (d)

Let the required number be x α'

$$\therefore 3x = \frac{3}{5}x^{2}$$

$$x^{2} = 5x$$

$$x^{2} - 5x = 0$$

$$\Rightarrow x (x - 5) = 0$$

$$\Rightarrow x = 0 (or) x = 5$$

10. Answer : (c)

∴
$$y = \log (2x + 5)$$

 $\frac{dy}{dx} = \frac{1}{2x + 5} \times 2 = \frac{2}{2x + 5}$

11. Answer: No. option

$$\int_{2}^{4} 3dx = 3 \int_{2}^{4} dx = 3 (x) |_{2}^{4}$$
$$= 3 (4-2)$$
$$= 6$$

IV. Choose the correct answer

12. Let the sum be₹p

$$\therefore \quad x = p \frac{x}{100} \times x$$
$$p = (\frac{100}{x}) \quad (₹)$$

13. Let 'n' be the total no. of personal in a room. $\therefore {}^{n}C_{n} = 66$

$$r_{c_{2}} = 66$$

$$r_{2} = 66$$

$$r_{1} = \frac{|n|}{|n-2||2|} = 66$$

[5 × 1 = 5]

$$\Rightarrow \frac{n(n-1)(p-2)!}{(p-2)!} = 132$$

$$\Rightarrow n(n-1) = 12 \times 11$$

$$\therefore n = 12 \text{ persons}$$
14. $\because b^2 - 4ac = 0$

$$\Rightarrow 6^2 - 4(1)(c) = 0$$

$$\Rightarrow 4c = 36$$

$$\Rightarrow C = \frac{36}{4} = 9$$
15. Given $f(x) = 2x^2 - 5x + 4 \text{ and}$

$$2f(x) = f(2x)$$

$$\Rightarrow 2[2x^2 - 5x + 4] = 2(2x)^2 - 5(2x) + 4$$

$$\Rightarrow 4x^2 - 10x + 8 = 2(4x^2) - 10x + 4$$

$$\Rightarrow 4x^2 + 8 = 8x^2 + 4$$

$$\Rightarrow 4x^2 = 4$$

$$\Rightarrow x^2 = 1$$

$$\Rightarrow x = \pm 1$$
16. $\lim_{n \to D} \frac{1}{7} + \frac{1}{7^2} + \dots + \frac{1}{7^n}$

$$\Rightarrow = \frac{a}{1-r} = \frac{\frac{1}{7}}{1-\frac{1}{7}}$$
 ($\because S_D = \frac{a}{1-r}$)

$$= \frac{\frac{1}{7}}{\frac{6}{7}}$$

$$= \frac{1}{6}$$

V. State whether the following statements are true or false

[5 × 1 = 5]

17. Answer: True

$$\therefore 15\% \text{ of } x = 20\% \text{ of } y$$

$$\Rightarrow \frac{15}{100} x = \frac{20}{100} y$$

$$\Rightarrow 15x = 20y$$

$$\therefore 3x = 4y$$

$$\Rightarrow \frac{x}{y} = \frac{4}{3} = 4 - 3$$

18. True

19. False

We know that No. of diagonals of polygon is ${}^{n}c_{2}$ - n

$$\therefore \frac{n_{c_2}}{2} - n = 44 \text{ (Given)}$$

$$\Rightarrow \frac{\underline{n}}{\underline{n-2} \ 2!} - n = 44$$

$$\Rightarrow \frac{n(n-1)\underline{p-2}}{\underline{p-2} \ 2} - n = 44$$

- ⇒ n² n 2n = 88⇒ n² - 3n - 88 = 0∴ n² - 11n + 8n - 88 = 0⇒ n(n-11) + 8 (n - 11) = 0
- ⇒ (n-11) (n+8) = 0
- \therefore n = 11 (or) n = -8 (not possible)

20. False

 $\lim_{x \to 3} \frac{x^2 - 4}{x + 1} = \frac{9 - 4}{4} = \frac{5}{4}$

21. False

∴ Demand function of product D = $12 - x^2$ ∴ Total Revenue = Dx (R) = $(12 - x^2) \times = 12x - x^3$ ∴ Marginal Revenue (MR) = $\frac{dR}{dx} = 12 - 3x^2$

VI. Match the following

[5 × 1 = 5]

22.	$\frac{2}{3}$ years	(D)
23.	∴ 2x + 3y – 5 = 0 and kx – 6y – 8 have	(C)
	Unique solution	
	$\therefore \frac{2}{x} = \frac{3}{-6} = \frac{-5}{-8}$	
	$\frac{2}{k} = \frac{3}{-6} = \frac{-1}{2}$	
	k = -4	
24.	$\therefore A = B$	(A)
	$ = \begin{bmatrix} x - 2 & 4 \\ 3 & 5 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ 3 & 5 \end{bmatrix} $	
	$\therefore x - 2 = -1$	
	x = 2 - 1	
	x = 1	
25.	Lim 1- $\sqrt{1-x^2}$	(B)
	$x \rightarrow 0 x^2$	
	$= \frac{Lt}{x \to 0} \frac{1\sqrt{1-x^2}}{x^2} \times \frac{1+\sqrt{1-x^2}}{1+\sqrt{1-x^2}}$	
	$= \frac{Lt}{x \to 0} \frac{1 - (1 - x^2)}{x^2 (1 + \sqrt{1 - x^2})}$	

	$= \frac{Lt}{x \to 0} \frac{x^{2}}{x^{2}(1+\sqrt{1-x^{2}})}$	
	$=\frac{1}{1+1}=\frac{1}{2}$	
26.	$\int_{1}^{2} xe^{x} dx$	(E)
	$= x^{ex} _{1}^{2} - \int_{1}^{2} 1 \cdot e^{x} dx$	
	$= 2e^2 - e - e^X _1^2$	
	$= 2e^2 - e - (e^2 - e)$	
	$= 2e^2 - \not e - e^2 - \not e$	
	$= e^2$	

VIII. Answer the following in one or two steps

[4 × 1 = 4]

27.
$$\therefore A = \{1, 2, 3\}$$
 and $B = \{1, 2, 3, 4\}$
 $A \Delta B = (A - B) \cup (B - A)$
 $= \{ \} \cup \{4\}$
 $= \{4\}$

28. $\sqrt{5}$ is a rational number (OR) $\sqrt{5}$ is an irrational number.

29.
$$\therefore A = \begin{pmatrix} 1 & 2 \\ 9 & 4 \end{pmatrix}; B \begin{pmatrix} 3 & 12 \\ 13 & 52 \end{pmatrix}$$

Let $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$
Given condition, $Ax = B$
 $= \begin{pmatrix} 1 & 2 \\ 9 & 4 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 12 \\ 13 & 52 \end{pmatrix}$
 $= \begin{pmatrix} a+2c & b+2d \\ 9a+4c & 9b+4d \end{pmatrix} = \begin{pmatrix} 3 & 12 \\ 13 & 52 \end{pmatrix}$

$$2a + Ac = 6$$

$$\therefore 2a + Ac = 6$$

$$9a + Ac = 13$$

$$\therefore \frac{- & - & -}{-7a & = -7}$$

$$a = 1$$

$$\therefore 1 + 2c = 3$$

$$2c = 2$$

$$c = 1$$

Similarly,

2b + Ad = 249b + 4d = 52_ _ _ -7b = -28 b = 4 ∴ 4 + 2d = 12 2d = 8d = 4 $\therefore \text{ The matrix } x = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 1 & 4 \end{bmatrix}$ Given in equality is -2 (m - 3) < 5 (m + 1) - 1230. = -2m + 6 < 5m - 7 = - 7m < -13 = 7m < 13 $= m < \frac{13}{7}$

Section – B

1. Answer any Nine questions of the following

[9× 2 = 18]

- (i) (d)
- (ii) (C) (iii) (C)

Given $N_1 = 40;$ $\bar{x}_1 = 5200$

$$N_2 = 60;$$
 $\overline{x}_2 = 6800$

Combined Mean
$$(\bar{x}_{12}) = \frac{N_1 \bar{X}_1 + N_2 \bar{X}_2}{N_1 + N_2}$$

= $\frac{40 \times 5200 + 60 \times 6800}{40 + 60}$
= $\frac{208000 + 408000}{100} = \frac{616000}{100} = 6160.$

(iv) (d)

Let the two numbers are a, b Arithmetic Mean = 34 $\Rightarrow \frac{a+b}{2} = 34$ a+b=68Geometric Mean = 16 $\Rightarrow \sqrt{a+b} = 34$ ab = 256i.e., the two numbers are 64, 4. Greater number is 64.

	$Z = 3M - 2\overline{x}$
(vi)	$\overline{x} - \overline{z} = 3\overline{x} - 3M = 3(\overline{x} - M)$
(*1)	We know that $r_k = 1 - \frac{6\Sigma D^2}{M^3 + 1} = 1 - \frac{6(50)}{23} = 1 - \frac{300}{504} = 0.40.$
(vii) (viii)	(a) (b) We know that P(AUB) = P(A) + P(B) - P(A\cap B) A and B are independent events, then P(AUB) = P(A) +P(B) - P(A) P(B) $\frac{2}{3} = \frac{2}{5} + P(B) - \frac{2}{5}P(B)$ $\frac{2}{3} - \frac{2}{5} = P(B) (1 - \frac{2}{5})$ $\frac{4}{15} = \frac{3}{5}P(B)$ P(B) = $\frac{4}{9}$
(ix)	(c) Given $\cap(s) = 25$ Let A be the event of divisible by 4 B be the event divisible by 7 $P(A) = \frac{6}{25}$; $P(B) = \frac{3}{25}$; $P(A\cap B) = 0$ $P(AUB) = \frac{6}{25} + \frac{3}{25} = \frac{9}{25} = 0.36$.
(x)	(a) We know that
	$P(x = r) = \frac{C^{-M}M^{r}}{r!}$
	Given $P(x = 2) = 9 P(x = 4) + 90 P(x = 6)$ $\frac{C^{-M}M'}{2!} = 9 \frac{C^{-M}M'}{4!} + 90 \frac{C^{-M}M'}{6!}$ $\frac{m^2}{2} = m^2 \left(\frac{\frac{3}{9}m^2}{24_8} + \frac{90 \text{ m}^4}{720_8}\right)$ $4 = 3m^2 + m^4$ $(m^2)^2 3m^2 - 4 = 0$ $(m^2)^2 + 4m^2 - m^2 - 4 = 0$ $m^2 (m^2 4) - 1 (m^2 + 4) = 0$ $(m^2 + 4) (m^2 - 1) = 0$ $m^1 - 1 = 0 \qquad m^1 + 4 = 0$ $m^2 = 1 \qquad m^2 \neq -4$ $m = \pm 1$
	∴ m = 1
(xi)	Standard Deviation = m = 1 (c)
	P(x = 1) = P(x = 2)

$$\frac{c^{-m}m^{1}}{1!} = \frac{c^{-m}m^{2}}{2!}$$

$$m = \frac{m^{2l}}{2}$$

$$\therefore m = 2$$

$$\therefore Mean (\bar{x}) = 2$$
(b)

(x) (b)

Group	Weight (W)	Index Number (I)	W.I.
Food	35	425	14875
Clothing	15	235	3525
Power & Fuel	20	215	4300
Rent and Rates	8	115	920
Miscellaneous	22	150	3300
	100		26920

$$\mathsf{P}_{01} = \frac{\sum \mathsf{W.l.}}{\sum \mathsf{W}} = \frac{26920}{100} = 269.2.$$

Answer any Nine question of the following Each question carries 2 marks
 i) histogram

i) ii)

Income (In ₹)	No. of Persons
499.5 – 999.5	15
999.5 - 1499.5	28
1499.5 – 1999.5	36
1999.5 – 2499.5	7
	86

∴ The number of persons earning more than ₹ 1500 = $\frac{43}{86} \times 100 = 50$.

$$\therefore x = 6.$$
iv) Given data is
15, 18, 10, 20, 23, 28, 12, 16
N = 8.
The data is arranged in ascending order
10, 12, 15, 16, 18, 20, 23, 28
First quartile, Q¹ = size of $\left(\frac{N+1}{4}\right)^{\text{th}}$ item
= size of $\left(\frac{8+1}{4}\right)^{\text{th}}$ item
= size of (2.25)th item
= 2nd item + 0.25 (3rd item - 2nd item)
= 12 + 0.25 (15 - 12)
= 12 + (0.25) (3) = 12.75.
v) two
vi) -1
vii) Given

Academics Department, The Institute of Cost Accountants of India (Statutory Body under an Act of Parliament) Page 10

[9×2 = 18]

Coefficient of variance of x and y = 40Cov(x, y) = 40 $\sigma_{0}^{2} = 16$, $\sigma^{2} = 256$ We know that Correlation coefficient = $\frac{\text{Cov}(x, y)}{\sigma_x \times \sigma_y}$ $r = \frac{40}{\sqrt{16.256}} = \frac{40^{105}}{4.16_8} = \frac{5}{8}$ viii) Given $P(A) : P(\overline{A}) = 3 : 7 = \frac{3}{10} : \frac{7}{10}$ $P(\overline{A}): P(A) = 3: 5 = \frac{3}{8}: \frac{5}{8}$ \therefore The probability that both pass = $\frac{3}{10} \times \frac{5}{8} = \frac{3}{16}$ ix) Given N = 4, $\sigma = 2$ $P = \frac{1}{2}, \qquad q = 1 - p = 1 - \frac{1}{2} = \frac{1}{2}$ $P (x = r) \qquad = \frac{n_{Cr} \times q^{n \cdot r} \times p^{r}}{r}$ $= 6 \times \left(\frac{1}{2}\right)^2 \times \left(\frac{1}{2}\right)^2$ $=\frac{6}{16}=\frac{3}{8}$ Probability that there are two heads = $\frac{3}{8}$ X) Given np = 20 $\sqrt{npq} = 4$ => npq = 16 $q = \frac{ppq}{pp} = \frac{16}{20}$ q = $\frac{4}{5}$ xi) Given $p(x = 3) = {}^{6}C_{3} \times \left(\frac{1}{2}\right)^{6-3} \times \left(\frac{1}{2}\right)^{3}$ $= 20 \times \left(\frac{1}{2}\right)^3 \times \left(\frac{1}{2}\right)^3$ $=\frac{20}{64}=\frac{5}{16}$ xii)

Commodity	p ₀	qo	p1	qı	po qo	p1 q1	p0 q1	p 1 q 0
A	4	3	6	2	12	12	8	18
В	5	4	6	4	20	24	20	24
С	7	2	9	2	14	18	14	18
D	2	3	1	5	6	5	10	3
					52	59	52	53

Fisher's price index Number = $\sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_1 q_1}{\sum p_0 q_1}} \times 100$

$$= \sqrt{\frac{53}{52} \times \frac{59}{52}} \times 100 = 107.36$$

Answer any FOUR of the following question

[4 × 6 = 24]

2	
3	•
-	

Class Interval (C.I.)	Frequency	Less than cumulative	Greater than cumulative
		frequency	frequency
100 – 200	12	12	240
200 - 300	18	30	228
300 – 400	30	60	210
400 – 500	42	102	180
500 – 600	60	162	138
600 - 700	78	240	78
	240		

Median (M) =L₁+
$$\frac{N_1 - c \times f}{f} \times c$$

= 500 + $\frac{120 - 102}{60} \times 100$ = 500 + 30 = 530.

4.

Class Interval (C.I.)	Frequency	Cumulative Frequency (C.F.)
0 - 4	4	4
4 - 8	9	13
8 – 12	23	36
12 – 16	55	91
16 – 20	62	153
20 – 24	30	183
24 – 28	12	193
28 - 32	5	200
	200	

5.

MTP_Foundation_Syllabus 2012_June2016_Set 2

Marks in	Marks in	Rank in	Rank in	$D = R_E - R_A$	D ²
Economics	Accountancy	Economics (R _E)	Accountancy (R _A)		
48	62	6	4	2	4
60	78	3	1	2	4
72	65	1	3	-2	4
62	70	2	2	0	0
56	38	4	7	-3	9
40	54	7	6	1	1
39	60	8	5	3	9
52	32	5	8	-3	9
30	31	9	9	0	0
					$\Sigma D^{2} = 40$

Given N = 9 Rank correlation, $r_k = 1 - \frac{6\sum D^2}{N^3 - N}$ $= 1 - \frac{6 \times 40}{9^3 - 9} = 1 - \frac{240}{720} = 1 - \frac{1}{3} = \frac{2}{3} = 0.67.$ $N_1 = \frac{N}{4} = \frac{200}{4} = 50$ $Q_1 = L_1 + \frac{N_1 - C \times f}{f} \times C$ $= 12 + \frac{50 - 36}{55} \times 4 = 12 + 1.018 = 13.018$ $N_1 = \frac{3N}{4} = \frac{3(200)}{4} = \frac{600}{4} = 150$ $Q_1 = L_1 + \frac{N_1 - C \times f}{f} \times C$ $= 16 + \frac{150 - 91}{62} \times 4 = 16 + 3.806 = 19.806$ Semi-inter quartile range $(S_1Q_R) = \frac{Q_3 - Q_1}{2}$ $= \frac{19.806 - 13.018}{2} = \frac{6.788}{2} = 3.394$ Coefficient of quartile deviation $= \frac{Q_3 - Q_1}{Q_3 + Q_1}$ $= \frac{19.806 - 13.018}{19.806 + 13.018} = \frac{6.788}{32.824} = 0.2068.$

6	
-	•

Commodity	2001		2005			p 0 q 1	p 1 q 0	
	qo	V	p ₀	qı	V	p1		
А	5	40	8	6	60	10	48	50
В	5	30	6	5	40	8	30	40
С	6	24	4	6	30	5	24	30
D	5	10	2	10	40	4	20	20
		104			170		122	140

Fisher's price index number,

$$p_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 \qquad = \sqrt{\frac{140}{104}} \times \frac{170}{122} \times 100 = 136.96.$$

Time Reversal Test:

$$P_{01} \times P_{10} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times \frac{\sum p_0 q_1}{\sum p_1 q_1} \times \frac{\sum p_0 q_0}{\sum p_1 q_0} = \sqrt{\frac{140}{104}} \times \frac{170}{122} \times \frac{122}{170} \times \frac{104}{140} = \sqrt{1} = 1.$$

 \therefore Time Reversal Test is satisfied.

Factors Reversal Test:

$$P_{01} \times Q_{10} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times \frac{\sum q_1 p_0}{\sum q_0 p_0} \times \frac{\sum q_1 p_1}{\sum q_0 p_1}}{\sqrt{\frac{140}{104} \times \frac{170}{122} \times \frac{122}{104} \times \frac{170}{140}}} = \sqrt{\left(\frac{170}{104}\right)^2} = \frac{170}{104} = \frac{\sum p_1 q_1}{\sum p_0 q_0}$$

: Factor Reversal Test is satisfied.

7.

Year	Sales (y)	Х	X ²	ху	Trend values $y_c = a + bx$
2007	33	-3	9	-99	32.893
2008	35	-2	4	-70	42.643
2009	60	-1	1	-60	52.393
2010	67	0	0	0	62.143
2011	68	1	9	68	71.893
2012	82	2	4	164	81.643
2013	90	3	1	270	91.393
	435		28	273	

Given N = 7

$$a = \frac{\sum y}{N} = \frac{435}{7} = 62.143$$

$$b = \frac{\sum xy}{\sum x^2} = \frac{273}{28} = 9.75$$

Estimate the sales for 2018 is

 $y_c = 62.143 + 9.75(8) = 140.143.$

8. The probability of getting head, $P = \frac{1}{2}$. The probability of getting rail, $q = 1 - \frac{1}{2} = \frac{1}{2}$.

Given P (X = 4), P (X = 5), P (X = 6) are in A.P.
2 P (X = 5) = P (X = 2), + P (X = 6)
2 ×
$${}^{n}c_{5} \times (q)^{n-5} \times p^{5} = {}^{n}c_{4} \times q^{n-4} \times p^{4} + {}^{n}c_{6} \times q^{n-6} \times p^{6}$$

2 × ${}^{n}c_{5} \times \left(\frac{1}{2}\right)^{n-5} \times \left(\frac{1}{2}\right)^{5} = {}^{n}c_{4} \times \left(\frac{1}{2}\right)^{n-4} \times \left(\frac{1}{2}\right)^{4} + {}^{n}c_{6} \times \left(\frac{1}{2}\right)^{n-6} \times \left(\frac{1}{2}\right)^{6}$
2 × ${}^{n}c_{5} \times \left(\frac{1}{2}\right)^{n} = \left(\frac{1}{2}\right)^{n} + \left({}^{n}c_{4} + {}^{n}c_{6}\right)$
2 × ${}^{n}c_{5} = {}^{n}c_{4} + {}^{n}c_{6}$
2 × ${}^{n}c_{5} = {}^{n}c_{4} + {}^{n}c_{6}$

Academics Department, The Institute of Cost Accountants of India (Statutory Body under an Act of Parliament) Page 14

$\frac{2}{(n-5)(n-6)! \times 5 \times 4}$ $\frac{2}{5(n-5)}$	4!	$= \frac{1}{(n-4)(n-5)(n-6)! \times 4!} + \frac{1}{(n-6)! \times 6 \times 5 \times 4!}$ $= \frac{1}{(n-4)(n-5)} + \frac{1}{30}$
$\frac{2}{5(n-5)}$ 12 (n - 4) 12n - 48 N ² - 21n 98 = 0 N ² - 7n - 14n + 9 N (n - 7) - 14 (n - (n - 7) (n - 14) =	98 = 0 - 7) = 0 0	$= \frac{30 + (n - 4)(n - 5)}{30(n - 4)(n - 5)}$ = 30 + (n - 4) (n - 5) = 30 + n ² - 9n + 20
n – 7 = 0 n – n = 7 n =	- 14 = 0 - 14	
∴ n = 7 (or) 14.		