

Paper- 4: FUNDAMENTALS OF BUSINESS MATHEMATICS AND STATISTICS

Full Marks: 100 Time Allowed: 3 Hours

Section - A

I. Answer any TWO questions. Each question carries 5 marks

 $[2 \times 5 = 10]$

1. ∴ Sum P = ₹1,000, t = 5 years
$$r = 12\%$$

∴ Simple Interest (S. I) = $\frac{Prt}{100}$
= $\frac{1,000(12)}{100} \times 5$
= 120×5
= ₹600

Now compound interest (C. I.) = P $\{(1+i)^n - 1\}$

$$= 1,000 \left\{ \left(\frac{1+10}{100} \right)^5 - 1 \right\}$$

$$= 1,000 \left\{ (1.1)^5 - 1 \right\}$$

$$= 1,000 \left(1.61051 - 1 \right)$$

$$= 1,000 \left(0.61051 \right)$$

$$= ₹610.50$$

∴ He GOT ₹10.50 more as interest.

2. Given equation is
$$\sqrt{\frac{x}{x-1}} + \sqrt{\frac{1-x}{x}} = \frac{13}{6} \longrightarrow (i)$$

Let $t = \sqrt{\frac{x}{x-1}}$ then $\sqrt{\frac{1-x}{x}} = \frac{1}{t}$
 \therefore From, (i), $t + \frac{1}{t} = \frac{13}{6}$
 $\Rightarrow \frac{t^2+1}{t} = \frac{13}{6}$
 $\Rightarrow 6t^2+6=13t$
 $\Rightarrow 6t^2-13t+6=0$
 $\Rightarrow 6t^2-9t-4t+6=0$
 $\Rightarrow 3t(2t-3)-2(2t-3)=0$
 $\Rightarrow (2t-3)(3t-2)=0$
 $\therefore 2t-3=0$ (OR) $3t-2=0$

$$t = 3/2 (OR) t = 2/3$$

Case (i) when
$$t = 3/2$$

$$\Rightarrow \sqrt{\frac{x}{x-1}} = \frac{3}{2}$$

$$\frac{x}{x-1} = \frac{9}{4}$$

$$\Rightarrow$$
 4x = 9x - 9

$$\Rightarrow$$
 5x = 9

$$X = 9/5$$

Case (ii) when t = 2/3

$$\Rightarrow \sqrt{\frac{x}{x-1}} = \frac{2}{3}$$

$$\frac{x}{x-1} = \frac{4}{9}$$

$$\Rightarrow$$
 9x = 4x - 4

$$X = -4/5$$

3. Given demand function faced by firm is P = 500 - 0.2x and

cost function is
$$c = 25x + 10,000$$

Now, total Revenue (R) = Px

$$= (500 - 0.2x) x$$

$$= 500x - 0.2x^2$$

$$\therefore$$
 Profit (P) = R - C

$$= 500x - 0.2x^2 - 25x - 10,000$$

$$= -0.2x^2 + 475x - 10,000$$

For Maximum profit, MR = MC

$$\Rightarrow \frac{dR}{dx} = \frac{dc}{dx}$$

$$\Rightarrow$$
 500 - (0.2) (2x) = 25

$$\Rightarrow$$
 500 - (0.4)x = 25

$$\Rightarrow$$
 (0.4)x = $\frac{500}{25}$ = 20

$$x = \frac{20}{0.4} = 50 \text{ units}$$

$$\therefore$$
 Price at x = 50 units is

$$P = 500 - (0.2) (50)$$

$$= 500 - 10$$

II. Answer any TWO questions. Each question carries 3marks

 $[2 \times 3 = 6]$

4. Given Condition is

$$\frac{(x+1)(x+1)}{(x+2)(x+1)} = \frac{9}{10}$$

$$\Rightarrow \frac{x+1}{x+2} = \frac{9}{10}$$

$$\Rightarrow$$
 10x + 10 = 9x + 18

5. Given n (A) = 41, n (B) = 19 and n(A \cap B) = 10

We know that n (A \cup B) = n(A) + n (B) - n (A \cap B)

$$\Rightarrow$$
 n (A \cup B) = 41 + 19 - 10

$$= 60 - 10$$

$$n (A \cup B) = 50$$

III. Choose the correct answer

 $[5 \times 1 = 5]$

7. Answer: (c)

Let
$$\frac{A}{3} = \frac{B}{4} = \frac{C}{5} = k(say)$$

$$\therefore$$
 A = 3k, B = 4k, C = 5k

Now A: B:
$$C = 3K : 4K : 5K$$

= 3: 4: 5

8. Answer: (b)

Required no. of ways = 4^5 = 1024

9. Answer: (a)

$$= log_2 (log_5 5^4)$$

$$= \log_2 4. \log_5 5$$
) $:: \log_5 5 = 1$

$$= log_2 4$$

$$= log_2 2^2$$

$$= 2 \log_2 2 = 2(1) = 2$$

10. Answer: (a)

$$f(x-1) = 2x-3$$

By verification west

Take
$$f(x) = 2x - 1$$

Now
$$f(x-1) = 2(x-1) - 1$$

$$= 2x - 3$$

11. Answer: (b)

$$\int (x+3)^6 dx = \frac{(x+3)^{6+1}}{6+1} + C$$
$$= \frac{(x+3)^7}{7} + C$$

IV. Fill in the blanks

 $[5 \times 1 = 5]$

$$\therefore b \alpha a^3$$

$$\Rightarrow$$
 b = k a³

$$= k \left(\frac{27}{8}\right)$$

: b increases in the ratio 27:8

13. Answer: ₹750

S. I =
$$\frac{\text{Prt}}{100}$$

= $\frac{2,500 \times 6 \times 5}{100}$
= 125×6
= ₹750

14. Answer: 5

$$\therefore x = 8 y = 2$$

$$Now(x^{4/3} + y^{2/3})^{1/2}$$

$$= (8^{4/3} + 27^{2/3})^{1/2}$$

$$= \left[(2^3)^{4/3} + (3^3)^{2/3} \right]^{1/2}$$

$$= (2^4 + 3^2)^{1/2}$$

$$= (16 + 9)^{1/2}$$

$$= (25)^{\frac{1}{2}}$$

$$= (5^2)^{1/2} = 5$$

15. Answer: 3x log3

$$\because y=3^X$$

$$Now \frac{dy}{dx} = 3^X log 3$$

$$(\because \frac{d}{dx}(a^X) = a^X \log a)$$

16. Answer: $x^3 + c$

$$\int 3x^2 dx = \mathcal{J}\left(\frac{x^3}{\mathcal{J}}\right) + c$$

V. State whether the following statements are true or false

 $[5 \times 1 = 5]$

- 17. False
- 18. False
- 19. True
- 20. False
- 21. True

VI. Match the following

 $[5 \times 1 = 5]$

22. Answer: (C)

The sub – duplicate ratio of 49:81

=
$$\sqrt{49}$$
: $\sqrt{81}$
= 7:9

23. Answer: (E)

$$AB = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$

24. Answer (A)

$$\therefore x = 2$$
 and $3x - 2y = 5$

$$\Rightarrow$$
 3(2) – 2y = 5

$$\Rightarrow$$
 2y = 6 - 5 = 1

$$\Rightarrow$$
 Y = $\frac{1}{2}$

25. Answer: (B)

$$n_{cr} + n_{cr-1} = n + 1_{cr}$$

26. Answer: (D)

$$\lim_{x\to 2} 3x + 6$$

$$= 3(2) + 6 = 6 + 6 = 12$$

VII. Answer the following in one or two steps

 $[9 \times 2] = 18$

27. Truth table for "p/q"

Р	q	pΛq
T	T	Т
T	F	F
F	T	F
F	F	F

28. Given is equation is

$$4x + 4 < 2x + 3$$

$$\begin{bmatrix} :: n_{Cr} = n_{CS} \\ \Rightarrow n = r + s \end{bmatrix}$$

$$\Rightarrow 11 = x + y$$

30.
$$\int_{1}^{4} 6 dx = 6 \int_{1}^{4} dx$$
$$= 6[x] \int_{1}^{4}$$
$$= 6(4-1)$$
$$= 6 \times 3 = 18$$

Section - B

 Answer any Nine questions of the following Each question carries 2 marks $[9 \times 2 = 18]$

(i) Answer: (d)

The upper part of a table that describes the column and sub-column

(ii) Answer: (a)

Grouped frequency distribution

(iii) Answer: (c)

Correct items = 43,32

Incorrect items = 34,23

$$N = 50$$

Average, x = 38

Correct total = $50 \times 38 + 43 + 32 - 34 - 23 = 1948$

Correct mean =
$$\frac{1948}{50}$$
 = 38.36

(iv) Answer: (d)

Given the equation is 5x + 6y = 70

Median of
$$x = 8$$

6 Median of y = 70 - 5, median of x

Median of y =
$$\frac{1}{6}$$
. (70 - 40)

$$=\frac{30}{6}$$

Median of y = 5.

(v) Answer: (b)

Given

N =
$$100 \times = 50$$
, M = 40 , Z = ?
Mode (z) = $3M - 2 \times = 3(40) - 2(50) = 120 - 100 = 20$

(vi) Answer: (a)

Given
$$r_k = 0.6, \ \Sigma D^2 = 66 \ , \qquad N = ?$$

$$r_k = 1 - \frac{6\Sigma D^2}{N^3 - N}$$

$$0.6 = 1 - \frac{6(66)}{N^3 - N}$$

$$\frac{396}{N^3 - N} = 1 - 0.6 = 0.4$$

$$N^3 - N = \frac{396}{0.4} = 990$$

$$N^3 - N = 990$$

$$N (N^2 - 1) = 990$$

$$\therefore N = 10$$

(vii) Answer: (b)

The regression lines are
$$X + 3y = 7$$
 ------(1) $2x + 5y = 12$ -----(2) The point of intersection of (1) and (2) is (1, 2)

(viii) Answer: (b)

We know that the total probability is one
$$P(A) = 1/3$$
, $P(B) = 0$, $P(C) = 2/3$

(ix) Answer: (b) Given P (A) = $\frac{1}{2}$, P (B) = $\frac{3}{5}$ A and B are independent events. Then P(A∩B) = P(A), P (B) = $\frac{1}{2} \cdot \frac{3}{5} = \frac{3}{10}$

(x) Answer: (b)

$$Npq = 2.25$$

$$q = \frac{npq}{np} = \frac{2.25}{9} = \frac{1}{4}$$

$$p = 1 - q = 1 - \frac{1}{4} = \frac{3}{4}$$

$$np = 9$$

$$n\left(\frac{3}{4}\right) = 9 3 \implies n = 12$$

(xi) Answer: (a)

Given
$$n = 5$$
; $r = 3$

$$r = 3$$

$$P = \frac{1}{2}$$

$$P = \frac{1}{2}$$
 ; $q = 1 - p = \frac{1}{2}$

$$P(x = r) = {}^{n}C_{r} \cdot q^{n-r} \cdot p^{r}$$

P (x = 3) =
$${}^{5}c_{3} \cdot \left(\frac{1}{2}\right)^{5-3} \cdot \left(\frac{1}{2}\right)^{3}$$

= $10 \cdot \frac{1}{4} \cdot \frac{1}{8}$
= $\frac{10}{32}$
= $\frac{5}{16}$ = 0.3125

(xii) Answer: (a)

Commodity	P ₀	Q_0	P ₁	Q_1	Pıqı	P_0q_0
Α	4	3	6	2	12	12
В	5	4	6	4	24	20
С	7	2	9	2	18	14
D	2	3	1	5	5	6
					59	52

Factor reversal test: -

$$P_{01} \times Q_{01} = \frac{\sum P_1 q_1}{\sum P_0 q_0}$$
$$= \frac{59}{52}$$

Answer any Nine question of the following Each question carries 2 marks

 $[9 \times 2 = 18]$

i) Histogram

ii)

Class Interval (C. I)	Cumulative Frequency (C. F)	Frequency (F)
200 – 250	56	18
250 – 300	38	23

300 – 350	15	15
350 - 400	0	0

:. The number of observations between 250 and 300 is 23.

iii) Given date

Arithmetic mean = 6

$$= \frac{1+3+5+6+x+10}{6} = 6$$

$$= x + 25 = 36$$

$$x = 36 - 25$$

$$x = 11$$

iv)

Х	f	x. f
1	1	1
2	2	4
3	3	9
4	4	16
5	5	25
	15	55

Arithmetic Mean =
$$\frac{\sum f \cdot x}{\sum f} = \frac{55}{15} = \frac{11}{3} = 3.67$$

v) Given

Arithmetic Mean (A. M) = 6.5

Geometric Mean (G. M) = 6

We know that

$$(G. M.)^2 = (A. M.) \times (H. M.)$$

$$G^2 = AH$$

$$36 = 6.5 \times (H. M.)$$

Harmonic Mean =
$$\frac{36}{6.5}$$
 = 5.54

vi) Regression equation are

$$8x - 10y + 66 = 0$$

$$10y = 8x + 66$$

$$y = \frac{8}{10}x + 6.6$$

∴
$$b_{yx} = \frac{8}{10}$$

$$40x - 18y = 214$$

$$40x = 18y + 214$$

$$x = \frac{18}{40}y + \frac{214}{40}$$

∴
$$b_{xy} = \frac{18}{40}$$

We know that

Coefficient of wrrolation, $r = \pm \sqrt{b_{xy}.b_{yx}}$

$$= \pm \sqrt{\frac{\cancel{18} \ 9}{\cancel{40}}} \cdot \frac{\cancel{8}}{\cancel{10}}$$

$$= \frac{3}{5}$$

- vii) Zero
- viii) Given

$$P(A \cap B) = 0.60 \quad P(AUB) = 0.70$$

We know that

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A) + P(B) = 0.6 + 0.7 = 1.3$$

$$1-P\left(\begin{matrix} -\\ A \end{matrix}\right)+1-P\left(\begin{matrix} -\\ B \end{matrix}\right)=1.3$$

$$P(\bar{A}) + P(\bar{B}) = 2-1.3$$

$$P\left(\stackrel{-}{A}\right) + P\left(\stackrel{-}{B}\right) = 0.7$$

ix) P(A) = 1/2, P(B) = 1/3, P(AB) = 1/4

We know that

$$P\left(\frac{A}{B}\right) = \frac{P(AB)}{P(B)}$$

$$=\frac{\frac{1}{4}}{\frac{1}{3}}=\frac{3}{4}$$

$$P\left(\frac{A}{B}\right) = \frac{3}{4}$$

x) We know that

$$P (x = r) = \frac{e^{-m} . m^r}{r!}$$

Given

P (x = 1) = P (x = 2)

$$\frac{2^{-m} \cdot m'}{1!} = \frac{2^{-m} \cdot m'}{2!}$$

$$M = 2$$

- ∴ Mean = 2
- xi) n(s) = 5
 - \therefore The probability of getting the value 8 is P (x = 8) = 1/5

xii)

Group	Group Index	Weight	WI
	(1)	(w)	
Α	120	6	720
В	132	3	396
С	98	4	392

D	115	2	230
Е	108	1	108
F	95	4	380
		20	2226

General index =
$$\frac{\sum W.I}{EW} = \frac{2226}{20} = 111.3$$

Answer any FOUR of the following questions

 $(4 \times 6 = 24)$

3.

Profit (₹)	No. of Shops
0 – 100	12
100 – 200	18
200 – 300	27
300 – 400	24
400 – 500	10
500 - 600	6

$$L_1 = 200;$$
 $f_1 = 27;$ $f_0 = 18;$ $f_2 = 24;$ $c = 100$

Model (Z) =
$$L_1 + \frac{f_1 - f_0}{2f_1 - f_0 - f_2} \times C$$

= $200 + \frac{27 - 18}{54 - 18 - 24} \times 100$ = $200 + \frac{9}{12} \times 100$ = 275.

:. From Graph Modal Value (z) = 275

4.

Class Interval (C.I.)	Frequency (f)	Mid value (m)	f.m.	Cumulative Frequency (C.F.)
25 – 50	21	37.5	787.5	21
50 – 75	47	62.5	2937.5	68
75 – 100	67	87.5	5862.5	135
100 – 125	89	112.5	10012.5	224
125 – 150	55	137.5	7562.5	279

150 – 175	21	162.5	3412.5	300
	300		30575	

Mean
$$\bar{x} = \frac{\sum f \times m}{\sum f} = \frac{30575}{300} = 101.9166$$

Median (M) = N₁ =
$$\frac{N}{2} = \frac{300}{2} = 150$$

= L₁ + $\frac{N_1 - C \times f}{f} \times C$ = 100 + $\frac{150 - 135}{89} \times 25$ = 101.2135.

5.

Class Interval (C.I.)	Frequency (f)	Mid value (m)	f.m.	$dx = m - \bar{x}$	dx ²	fdx ²
0 – 10	5	5	25	-30.25	915.0625	4575.3125
10 – 20	15	15	225	-20.25	410.0625	6150.9375
20 – 30	30	25	750	-10.25	105.0625	3151.875
30 – 40	65	35	2275	-0.25	0.0625	4.0625
40 - 50	80	45	3600	9.75	95.0625	7605
	195		6875			21487.1875

Mean
$$\bar{x} = \frac{\sum f \times m}{\sum f} = \frac{6875}{195} = 35.25$$

Standard Deviation (
$$\sigma$$
) = $\sqrt{\frac{\sum f \times dx^2}{\sum f}} \times 100$ = $\sqrt{\frac{21487.1875}{195}}$ = 10.497.

Coefficient of Variation =
$$\frac{\text{Standard Deviation}}{\text{Mean}} \times 100 = \frac{\sigma}{\overline{x}} \times 100 = \frac{10.497}{35.25} \times 100 = 29.78.$$

6.

Х	У	$x = x - \overline{x}$	$y = y - \overline{y}$	ху	X ²	y ²
2	7	-1.875	4	-7.5	3.5156	16
6	2	2.125	-1	-2.125	4.5156	1
4	1	0.125	-2	-0.25	0.0156	4
3	1	-0.875	-2	1.75	0.7656	4
2	2	-1.875	-1	1.875	3.5156	1
2	3	-1.875	0	0	3.5156	0
8	2	4.125	-1	-4.125	17.0156	1
4	6	0.125	3	0.375	0.0156	9
				-10	32.8748	36

$$\bar{x} = \frac{\sum x}{N} = \frac{31}{8} = 3.875$$

$$\bar{y} = \frac{\sum y}{N} = \frac{24}{8} = 3$$

$$By x = \frac{\sum xy}{\sum x^2} = \frac{-10}{32.8748}$$

Regression equation of y on x is

$$y - \overline{y} = Byx (x - \overline{x})$$

$$y - 3 = {-10 \over 32.8748} (x - 3.875)$$

$$y = 3 - \frac{10}{32.8748} (x - 3.875)$$

If
$$x = 20$$
, then
$$y = 3 - \frac{10}{32.8748}$$

$$= 3 - 4.9$$

7.

Commodity	2001		2005		p ₀ q ₀	pıqı	P0 q 1	p 1 q 0
	p_0	q 0	p ₁	q1				
Α	5	10	4	12	50	48	60	40
В	8	6	7	7	48	49	56	42
С	6	3	5	4	18	20	24	15
					116	117	140	97

Fisher's Price Index Number,

$$p_{01} = \sqrt{\frac{\sum p_1 q_0}{\sum p_0 q_0}} \times \frac{\sum p_1 q_1}{\sum p_0 q_1} \times 100 = \sqrt{\frac{97}{116}} \times 100 = 83.59$$

Marshall Edgeworth price Index Number,

$$p_{01} = \frac{\sum_{i} p_{i} q_{0} + \sum_{i} p_{i} q_{i}}{\sum_{i} p_{0} q_{0} + \sum_{i} p_{0} q_{i}} \times 100 = \frac{97 + 117}{116 + 140} \times 100 = \frac{214}{256} \times 100 = 83.59$$

8. Given

The probability of A will succeed, $P(A) = \frac{4}{5}$

The probability of B will succeed, P(B) = $\frac{3}{4}$

The probability of C will succeed, P(C) = $\frac{2}{3}$

Now

$$P(A) = \frac{4}{5} \Rightarrow P(\overline{A}) = 1 - P(A) = 1 - \frac{4}{5} = \frac{1}{5}$$

$$P(B) = \frac{3}{4} \Rightarrow P(\overline{B}) = 1 - P(B) = 1 - \frac{3}{4} = \frac{1}{4}$$

$$P(C) = \frac{2}{3} \Rightarrow P(\overline{C}) = 1 - P(C) = 1 - \frac{2}{3} = \frac{1}{3}$$

.. The probability that atleast two of them hit the balloon

$$= \mathsf{P}(\mathsf{A} \cap \mathsf{B} \cap \overline{\mathsf{C}}\,) + \mathsf{P}(\mathsf{A} \cap \overline{\mathsf{B}}\, \cap \mathsf{C}) + \mathsf{P}(\overline{\mathsf{A}}\, \cap \mathsf{B} \cap \mathsf{C}) + \mathsf{P}(\mathsf{A} \cap \mathsf{B} \cap \mathsf{C})$$

$$= P(A) \times P(B) P(\overline{C}) + P(A) \times P(\overline{B}) \times P(C) + P(\overline{A}) \times P(B) \times P(C) + P(A) \times P(B) \times P(C)$$

$$= \frac{4}{5} \times \frac{3}{4} \times \frac{1}{3} + \frac{4}{5} \times \frac{2}{3} \times \frac{1}{5} \times \frac{3}{4} \times \frac{2}{3} + \frac{4}{5} \times \frac{3}{4} \times \frac{2}{3}$$

$$= \frac{12}{60} + \frac{8}{60} + \frac{6}{60} + \frac{24}{60}$$

$$=\frac{50}{60}$$

$$=\frac{5}{6}$$