FOUNDATION COURSE EXAMINATION

June 2016

P-4(FBMS) Syllabus 2012

Fundamentals of Business Mathematics and Statistics

Time Allowed: 3 Hours

Full Marks: 100

The figures in the margin on the right side indicate full marks. Notations and symbols used are as usual.

Section A

1. Answer any two questions:

 $5 \times 2 = 10$

- (a) The difference between the compound interest and the simple interest on a sum put out for 2 years at 10% was ₹ 500. Find the sum.
- (b) Simplify: $[\{(1-0.1)^{-1}-1\}^{-1}]^{-\frac{1}{2}}$.
- (c) The average cost function (AC) for a certain commodity is given by AC = $2q^2 36q + \frac{70}{a}$ in terms of output q. Find the value of q for which the marginal cost is a minimum.

2. Answer any two questions:

3x2=6

- (a) In an A.P. the sum of first 16 terms is 80 and the 16th term is 20. Find the sum of first 26 terms.
- (b) Solve for $x : (\log_{10} x)^2 5 \log_{10} x = 2(1 2 \log_{10} x)$.
- (c) Find A + A' where the matrix $A = \begin{bmatrix} 5 & 6 & -3 \\ 5 & 7 & 2 \\ 0 & 0 & 11 \end{bmatrix}$, and A' is the transpose of A.

Choose the correct answer:

 $1 \times 5 = 5$

- (a) What number is to be added to each term of the ratio 7:9 to equal 15:16?
 - (i) 23
- (ii) 16
- (iii) 31
- (iv) 13.
- (b) If $x \propto y$ and x = 2, then y = 4, when x = 3, the value of y is
- (i) $\frac{1}{6}$ (ii) $\frac{1}{2}$ (iii) 6

- (c) If ${}^{5}C_{r} = {}^{5}C_{r+1}$, then ${}^{7}C_{2}$ is
- (i) 1 (ii) 2 (iii) 0
- (iv) 3.
- (d) If f(x + 1) = 3x 4, then f(x) is
 - (i) 3x + 2 (ii) 3x 7 (iii) 4x 3
- (iv) 3x 1

	2				
(e)	If $\int_{1}^{2} k dx =$	4, (where k is a	constant),	then the	value of k is

(i) 4

(ii) 2

(iii) 0

(iv) -3

4. Fill in the blanks:

 $1 \times 5 = 5$

(a) The range of x for which the function $3x^3 - 9x$ is a decreasing function of x is _____.

(b) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \end{bmatrix}$, then determinant of A is _____.

(c) If $y = e^{2logx}$, then $\frac{dy}{dx}$ is _____.

(d) If the sum of the roots of the quadratic equation $(m + 1)x^2 + 2mx + 1 = 0$ be 1, then the value of m is _____.

(e) The ninth term of the sequence 1, 3, 9, 27, 81, is _____.

5. State whether the following statements are true (T) or false (F):

 $1 \times 5 = 5$

(a)
$$(1+2+3+\cdots+n)^2 = 1^3+2^3+3^3+\cdots+n^3$$
.

(b) The null set is a subset of every set.

(c) If a function is continuous at x = 1, then $\lim_{x \to 1} f(x) \neq f(1)$.

(d) $\frac{d}{dx}$ of a constant function is zero.

(e) The value of 2° is 2.

6. Match the following:

 $1 \times 5 = 5$

(a) If the matrix $\begin{bmatrix} 2 & 3 \\ -4 & -k \end{bmatrix}$ be singular the value of k is	$(i)\frac{3}{2}$
(b) if $^nP_2 = 20$, the value of n is	(ii) 4
(c) The third term of the expansion $\left(\frac{2x}{3} - \frac{3}{4x}\right)^4$ is	(iii) 6
(d) If $n(A) = 15$, $n(B) = 20$ and $n(A \cup B) = 22$, then $n(A \cap B)$ is	(iv) 5
(e) $\int_0^2 x^3 dx =$	(v) 13

7. Answer the following in one or two steps:

 $1 \times 4 = 4$

- (a) Using truth table show that $(p \lor q) \lor \sim p$ is a tautology.
- (b) Draw a Venn diagram for three non-empty sets A, B and C, satisfying the properties:

$$A \subset (B \cap C), B \subset C, C \neq B, C \neq A.$$

- (c) Solve for x: 3x 4 < 8x + 6.
- (d) If $u = x^2 2xy + y^2$, then $\frac{\partial^2 u}{\partial y \partial x} = ?$

Section B

8. Choose the correct answer (any nine):

2×9=18

- (a) OGIVE is the
 - (i) Frequency curve
 - (ii) Frequency polygon
 - (iii) Cumulative frequency polygon
 - (iv) Histogram
- (b) Pie chart is also called
 - (i) Multiple bar diagram
 - (ii) Circular diagram
 - (iii) Line chart
 - (iv) Simple bar diagram
- (c) The Arithmetic Mean of three numbers 1, 2 and 4 is

(i)
$$(1 \times 2 \times 4)^{1/3} = 2$$

(ii)
$$1 \times 2 \times 4 = 8$$

(iii)
$$\frac{3}{1+\frac{1}{2}+\frac{1}{4}} = \frac{12}{7}$$

(iv)
$$\frac{1+2+4}{3} = 2\frac{1}{3}$$

- (d) The variance of the observations x_1, x_2, \dots, x_n is
 - (i) $\sum_{i=1}^{n} (x_i \bar{x})^2$
 - (ii) $\sum_{i=1}^{n} \frac{x_i^2 \bar{x}^2}{n}$
 - (iii) $\frac{1}{n} \sum_{i=1}^{n} x_i^2 \bar{x}^2$
 - (iv) $\left[n \sum_{i=1}^{n} x_i^2 \bar{x}^2\right]/n$
- (e) The Arithmetic Mean of 1, 2, 2^2 , ..., 2^9 is
 - (i) 102·4
 - (ii) 102·3
 - (iii) 1024
 - (iv) 51·1
- (f) The Geometric Mean of 4, 6, 9 with weights 1, 2, 1 respectively is
 - (i) 4
 - (ii) 8
 - (iii) 6
 - (iv) 3
- (g) If $Q_1 = 26$, $Q_2 = 46$ and $Q_3 = 76$, the value of the Quartile Deviation is
 - (i) 50
 - (ii) 20
 - (iii) 30
 - (iv) 25
- (h) For two mutually exclusive events A and B if $P(A) = \frac{1}{2}$ and $P(A \cup B) = \frac{2}{3}$, then P(B) is
 - (i) $\frac{1}{4}$
 - (ii) $\frac{1}{6}$
 - (iii) $\frac{1}{3}$
 - (iv) $\frac{1}{5}$

- (i) For a binomial distribution b (n, p) if mean and variance are 9 and 6 respectively, then the value of n is
 - (i) 24
 - (ii) 21
 - (iii) 27
 - (iv) 18
- (j) If the regression coefficients are $b_{xy}=-0.2$ and $b_{yx}=-0.8$, then the correlation coefficient is
 - (i) 0·2
 - (ii) ± 0.4
 - (iii) -0.4
 - (iv) +0.4

(k)

Commodity	Base price (in ₹)	Base quantity (in kg.)	Current price (in ₹)	Current quantity (in kg.)	
A	2	1	7	2	
В	4	2	6	3	
C	3	3	5	4	
D	1	4	3	5	

Laspeyre's Price Index is

- (i) 200
- (ii) 2
- (iii) 50
- (iv) $\frac{1}{2}$
- 9. Answer any nine questions:

 $2 \times 9 = 18$

- (a) The Geometric Mean of 4, 6 and p is 6. Find the value of p.
- (b) Using empirical relation between mean, median and mode find the mode when mean = 12 and median = 11.
- (c) For two observations AM =25 and GM=15. Find HM.

- (d) If s.d. of x is 5, find s.d. of y=3x-10.
- (e) If 2x y + 1 = 0 and x 2y + 1 = 0 be two regression equations, find the value of y when x=5.
- (f) For two independent events A and B, if $P(A \cup B) = \frac{7}{12}$ and $P(A) = \frac{1}{3}$ find P(B).
- (g) For a Poisson variable X, P(X = 0) = P(X = 1). Find the mean of X.
 - (h) For a binomial distribution with n=6 and p, the mean is 2. Find P(X=0).
 - (i) Find the 3-year moving averages of the following data:

Year	2008	2009	2010	2011	2012
Value	3	5	7	9.	11

- (j) The algebraic sum of deviations from 45 of 25 observations is -55. Find the arithmetic mean of the observations.
- (k) If $P(A) = \frac{2}{3}$, $P(B) = \frac{3}{4}$ and $P(A \cup B) = \frac{5}{7}$, then find the conditional probability P(A/B).

10. Answer any four questions:

6×4=24

(a) Consider the frequency distribution of daily sales (in'00 ₹) of a shop for 685 days with some missing frequencies.

Class	10 – 20	20 – 30	30 – 40	40 - 50	50 - 60	60 – 70	70 – 80
Frequency	185	*	34	180	136	*	50

If the median of the distribution is 42.6, find out the missing frequencies.

(b) The following frequency distribution shows the height (in cm) of 90 students of a college selected at random:

Class	140.5 –145.5	145.5 – 150.5	150-5 – 155-5	155-5 – 160-5	160.5 – 165.5	165.5 – 170.5	170-5 – 175-5
Cumulative Frequency	7	16	31	54	* 75	85	90

Calculate first and third quartiles and hence calculate the quartile deviation.

- (c) Three identical urns contain respectively 5 white and 3 black, 6 white and 2 black, and 3 white and 5 black balls. One urn is chosen at random and a ball is drawn from it.
 - (i) What is the probability that the ball is white?
 - (ii) Given that the ball is white, find the probability that it came from the third urn.
- (d) You are given the following data:

Variable	Arithmetic mean	Standard deviation	Correlation coefficient
\boldsymbol{x}	20	5	
y	25	4	0.6

Find the regression equations y on x and x on y. Estimate y when x = 25.

(e) Fit a linear trend to the following data by least squares method and estimate exports for the year 2016:

Year	2007	2008	2009	2010	2011	2012	2013
Exports (in tons)	50	53	56	68	65	67	75